Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Implementation of an MRACnn System on an FBR Building Block Type Simulator

Ugolini; Yoshikawa, Shinji; Ozawa, Kenji

PNC TN9410 95-253, 13 Pages, 1995/10

PNC-TN9410-95-253.pdf:0.5MB

This report presents the implementation of the a model reference adaptive control system based on the artificial neural network technique (MRAC$$_{nn}$$) in a fast breeder reactor (FBR) building block type (BBT) simulator representing the Monju prototype reactor. The purpose of this report is to improve the control of the outlet steam temperature of the three evaporators of the Monju prototype reactor. The connection between the MRAC$$_{nn}$$ system and the BBT simulator is achieved through an external shared memory accessible by both systems. The MRAC$$_{nn}$$ system calculates the demand for the position of the feedwater valve replacing the signal of a PID controller collocated inside the heat transport system model of the Monju prototype reactor. Two series of simulation tests havc been performed, one with one loop connected to the MRAC$$_{nn}$$ system (leaving the remaining two connected to the original PID controller), and the other with three loops connected to the MRAC$$_{nn}$$ system. In both simulation tests the MRAC$$_{nn}$$ system performed better than the PID controller, keeping the outlet steam temperature of the evaporators closer to the required set point value through all the transients.

JAEA Reports

Outline of air-cooling thermal transient test facility

*; *; Uno, Tetsuro*

PNC TN9410 86-029, 68 Pages, 1986/02

PNC-TN9410-86-029.pdf:12.61MB

A new test facility "Air-Cooling Thermal Transient Test Facility" (ATTF) was constructed at O-arai Engineering Center. This test facility is utilized, in the first place, for evaluating the strength of outlet tube-sheets of steam generators of FBR Plants. The objectives of the tube-sheet model tests are as follows. The first is to investigate and evaluate the strain concentration in the plastic region. The second is to confirm the adequacy of the design criteria for the prototype reactor MONJU. The third is to confirm the safety margin for failure incorporated in the design evaluation methods. ATTF can impose severe thermal loadings (only cold shock) on the test specimens. The facility produces compressed air (Max. 35kg/cm$$^{2}$$G) by two large-sized compressors, and stores it in a storage tank (about 60m$$^{3}$$). After a test specimen is heated up to the aimed temperature the compressed air passes through the test specimens quickly by opening the valve to apply cold shock and is released in the atmosphere. Each main loop pipe is 8 inches in diameter and the flow rate is max. 10kg/s in compressed air. The most severe down thermal transient condition is from 550$$^{circ}$$C to 150$$^{circ}$$C (for tube-sheet model) in about 4 min. The test section can be modified for various kinds of structures, which should be air-tight and have the maximum pressure of 8kg/cm$$^{2}$$G. The facility is operated automatically by two sequencer controllers. One of the main features of ATTF is the adoption of compressed air instead of sodium as coolant. By using compressed air, various kinds of sensors which can not be used in the sodium environment can be used in ATTF; particularly strain gages can be used effectively to obtain strain distribution for thermal transient condition, and the location as well as the mode of failure of test specimens can be recognized easily through the detection of crack initiation and the observation of crack growth. ATTF is expected to be a powerful ...

2 (Records 1-2 displayed on this page)
  • 1